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Abstract

Secure, privacy-preserving sharing and analysis of health data is foundational to precision
medicine, population health, and telehealth services. Emerging quantum networks
promise fundamentally new communication primitives (entanglement, quantum key
distribution) that when integrated with advanced Al architectures can enable end-to-end
secure healthcare systems with improved confidentiality, tamper resistance, and novel
distributed computation modes. This article develops a systematic framework for
integrating quantum communications and cryptography with classical and hybrid
quantum-—classical Al models in healthcare. We (a) summarize the enabling quantum
network technologies and Al building blocks, (b) propose layered system architectures
and protocols for secure data exchange and collaborative learning, (c) formalize threat
models and privacy requirements in healthcare contexts, (d) discuss algorithmic
integrations (federated learning with QKD, quantum-enhanced machine learning, secure
multiparty quantum protocols), (e) provide evaluation metrics and prototype deployment
roadmaps, and (f) identify research gaps and regulatory implications. The treatment is
scholarly yet practical, aimed at researchers, engineers, and healthcare stakeholders
planning future-proof secure Al systems. (Keywords: quantum networks; quantum key
distribution; quantum machine learning; federated learning; healthcare security; privacy.)

Keywords: Quantum networks; quantum key distribution; quantum machine learning;
federated learning; healthcare data security; privacy-preserving Al; post-quantum

cryptography.
1. Introduction

Healthcare systems today face a dual imperative: (1) rapidly enable data-driven Al to
improve diagnosis, treatment planning, and operational efficiency, and (2) protect
sensitive patient data under strict legal regimes (e.g., HIPAA, GDPR) and against
sophisticated adversaries. Classical cryptography, secure infrastructure, and governance
practices are necessary but may be insufficient as networks grow in scale and adversaries
gain novel capabilities (e.g., quantum computers). Quantum networking technologies
beginning with quantum key distribution (QKD) and progressing toward multi-node
quantum repeaters and the quantum internet offer new cryptographic guarantees and
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primitives that can be combined with Al to build next-generation secure healthcare
systems (Wehner, Elkouss, & Hanson, 2018; Kimble, 2008).

This paper asks: How can quantum networks be integrated with contemporary Al
architectures to deliver practical, secure, and privacy-preserving healthcare
systems? We present a layered framework that connects physical quantum links and
QKD to application-level Al workflows (centralized, federated, or hybrid), and we analyze
security, privacy, performance, and regulatory aspects. The goal is an actionable road
map for researchers and practitioners planning prototypes or pilots in regulated
healthcare settings.

Structure: Section 2 reviews background on quantum networks and Al architectures in
healthcare. Section 3 formalizes the problem and threat model. Section 4 develops the
integration framework and system architecture. Sections 5-8 examine protocols, Al
integrations, privacy and regulation, and evaluation. Section 9 presents deployment
pathways and research challenges. Section 10 concludes.

2. Background and Related Work
2.1 Quantum networks primitives and state of the art

Quantum networks enable transmission and distribution of quantum states between
remote nodes (Wehner et al., 2018). The most mature capability is quantum key
distribution (QKD), which uses quantum signals to establish information-theoretically
secure symmetric keys (Bennett & Brassard, 1984; Ekert, 1991). QKD is already
commercially available in point-to-point links and metropolitan testbeds (Liao et al., 2017;
Pirandola et al., 2020). Research on quantum repeaters, entanglement swapping, and
networked quantum memories aims to extend QKD to long distances, enabling a future
quantum internet for entangled communication, clock synchronization, and distributed
quantum computation (Kimble, 2008; Wehner et al., 2018).

Key properties:

« Information-theoretic secrecy for keys derived by QKD against bounded or even
unbounded adversaries (assuming correct implementation and authenticated
classical channels).

« Entanglement-based primitives enable distributed correlations not achievable
classically, with potential for novel distributed algorithms and verifiable quantum
protocols.

« Hardware maturity gap: long-haul repeater networks remain research-stage;
metropolitan QKD is feasible today but bandwidth/latency are limited relative to
classical channels.
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2.2 Al architectures in healthcare

Al in healthcare runs the gamut from edge inference on medical devices and loT sensors
to cloud-scale training of large models on federated data. Typical architectures include:

o Centralized training/inference: aggregated EHRs or imaging datasets under
controlled environments.

e Federated learning (FL): local model training at hospitals (clients) with centralized
aggregation of model updates designed to avoid raw data sharing (Konecny et al.,
2016; Kairouz et al., 2019).

« Split learning and hybrid architectures: model parts reside at clients and
servers to balance privacy and compute.

« Quantum-enhanced ML: nascent class of algorithms using quantum circuits as
subroutines or hybrid variational quantum circuits (VQCs) to accelerate or improve
ML tasks (Biamonte et al., 2017).

Healthcare constraints include strict privacy, often low amounts of labeled data per site,
regulatory auditability, and stringent latency/availability requirements.

2.3 Related work: security, privacy, and post-quantum concerns

Research links quantum networking and secure distributed computation. Proposed
integrations include QKD for secure aggregation channels in federated learning (e.g., to
protect model updates in transit) and quantum-secure authentication (Bennett &
Brassard, 1984; Wehner et al., 2018). Simultaneously, the rise of quantum computing
motivates post-quantum cryptography (PQC) to protect stored data and classical
channels against future quantum attacks (NIST PQC processes). On the ML side, privacy
methods such as differential privacy (DP) and secure multiparty computation (MPC)
complement quantum protections (Dwork & Roth, 2014; Bonawitz et al., 2017). Our
framework synthesizes these literatures into a coherent design for healthcare systems.

3. Problem Statement and Threat Model
3.1 System goals
We seek architectures that satisfy the following objectives for healthcare Al systems:

1. Confidentiality: Patient data and model updates must remain private during
transmission, storage, and computation.

2. Integrity and Authenticity: Data and model updates must be verifiably unaltered
and origin-authenticated.
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3. Availability: Systems must meet operational latency and throughput requirements
for clinical workflows.

4. Regulatory auditability: Actions taken by Al (e.g., triage decisions) must be
explainable and auditable.

5. Quantum-resilience: Systems should be robust against present and future
quantum attacks on classical cryptography and leverage quantum primitives where
they offer advantage.

3.2 Actors

« Hospitals / clinical nodes (clients): hold local patient data and run local model
training/inference.

o Aggregator / coordinator: orchestrates federated updates, model validation, and
reporting.

« Quantum network operator: manages QKD links, entanglement distribution and
hardware.

« Adversary types: passive eavesdroppers, active MITM attackers, malicious
insiders (Byzantine clients), and future quantum-capable adversaries.

3.3 Threat model assumptions

o Classical channels are authenticated but may be eavesdropped. QKD provides
symmetric keys secure in principle against quantum computers.

o Adversaries may control a bounded number of clients (Byzantine behavior) and
may attempt model inversion or membership inference from model parameters
(Fredrikson et al., 2015).

« Hardware imperfections (side channels) must be considered; practical QKD
requires careful implementation and authentication (Scarani et al., 2009).

4. Integration Framework: Architectural Layers

We propose a four-layer architecture that cleanly separates concerns and enables
incremental adoption (Figure 1 conceptual).

1. Physical Quantum Layer (Layer Q-PHY): optical fibers, quantum
transmitters/receivers, quantum repeaters when available. Supports QKD
sessions and entanglement links.

2. Quantum Crypto & Key Management Layer (Q-KM): runs QKD protocols (BB84,
E91 variants), key distillation, authentication, and stores quantum-generated
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symmetric keys in Hardware Security Modules (HSMs) or quantum-aware key
vaults. Keys can be used for one-time pad encryption of highly sensitive payloads
or to seed symmetric cryptographic systems.

3. Secure Classical Transport & Compute Layer (C-SEC): classical channels
protected by hybrid encryption (QKD-derived keys + PQC for signatures), secure
MPC, and authenticated aggregation for FL.

4. Al Application Layer (Al-APP): federated learning orchestration, local model
training, privacy controls (DP), audit logging, and clinician interfaces.

This layered decomposition supports progressive upgrades: initial pilots can adopt QKD
on selected metropolitan links while leveraging PQC for long-distance classical routes;
later, entanglement distribution and quantum repeaters can enable more advanced
distributed quantum protocols.

5. Protocols and Primitives
5.1 Quantum key distribution for secure channels

QKD protocols (BB84, E91) generate shared symmetric keys between nodes with
security rooted in quantum mechanics (Bennett & Brassard, 1984; Ekert, 1991). Practical
QKD includes error correction and privacy amplification stages; keys are used for link
encryption (AES with QKD-seeded keys or one-time pads for short messages). QKD
supports forward secrecy against future quantum adversaries for data in transit; however,
stored data still requires PQC protection.

Design decision: Use QKD for short-lived, high-sensitivity exchanges (e.g., exchange of
fine-grained genomic data or patient consent tokens). For bulk model updates, use hybrid
encryption where QKD provides session keys for key-wrapping.

5.2 Quantum-assisted authentication and identity

Entanglement and quantum authentication schemes can enhance node authentication
beyond classical certificates (Barnum et al., 2002). In early deployments, classical PKI
augmented with QKD-derived symmetric keys and PQC signatures provides a practical
balance.

5.3 Secure aggregation for federated learning

In federated learning, secure aggregation protocols (Bonawitz et al., 2017) allow the
aggregator to compute the sum of client updates without learning individual updates. QKD
can secure the transport layer of secure aggregation, while MPC provides cryptographic
guarantees at the protocol level. We propose QKD-transport + MPC aggregation: keys
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from QKD establish secure channels; MPC or homomorphic encryption computes
aggregated models over ciphertexts to protect client-level privacy.

5.4 Post-quantum cryptography (PQC) integration

Even with QKD, many classical channels and stored data must be protected by PQC
algorithms (lattice-based, code-based schemes) to ensure long-term confidentiality
(Bernstein et al., 2017; NIST, 2022). Integrate PQC signatures for code signing and
software updates, and PQC key encapsulation mechanisms for end-to-end encryption
where QKD is unavailable.

5.5 Quantum-enhanced machine learning primitives

Quantum circuits can implement parameterized variational forms (VQCs) that serve as
function approximators or feature maps for classical models. Hybrid quantum—classical
pipelines can use quantum circuits to transform input data into higher-dimensional Hilbert
spaces before classical processing (Schuld & Killoran, 2019). Potential uses in healthcare
include quantum feature maps for genomics or drug discovery models, and quantum-
assisted optimization for model hyperparameter search.

6. Al Architectures and Algorithmic Integrations
6.1 Federated learning over quantum-secured links

Architecture: Each clinical site trains a local model on private EHR/imaging data. Model
updates (gradients or model weights) are encrypted and transmitted over QKD-secured
channels to an aggregator. Aggregation occurs under MPC to prevent leakage of
individual updates. The aggregated model is redistributed to clients.

Advantages:

« QKD ensures confidentiality for updates in transit against present and future
adversaries.

« MPC and DP protect against leakage from aggregated model parameters
(Bonawitz et al., 2017; Dwork & Roth, 2014).

Mathematical sketch: suppose client (i) computes local update (\Delta w_i). Under
secure aggregation, the aggregator receives (\sum_i \Delta w_i) without access to each
(\Delta w_i). QKD secures channels for exchange of shares; MPC reconstructs the sum.
DP noise (\mathcal{N}(0,\sigma”2)) can be added to each (\Delta w_i) to provide formal
privacy bounds.

6.2 Hybrid quantum—classical training
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Hybrid training alternates classical optimizers with quantum circuit executions. For
supervised tasks (e.g., cancer image classification), a hybrid model might use a VQC as
a learned feature extractor followed by a classical dense network. Training uses gradient
estimation via parameter shift rules for quantum parameters while classical parameters
use standard backpropagation (Mitarai et al., 2018).

Technical challenge: noisy quantum hardware (NISQ era) limits circuit depth; error
mitigation techniques and careful ansatz selection are essential.

6.3 Differential privacy and auditability

Differential privacy (DP) provides an auditable privacy guarantee for outputs of learning
systems. Combining DP with quantum networks requires rethinking privacy budgets when
QKD reduces transport risk DP should still be applied to model updates to bound
information leakage from parameters (Dwork & Roth, 2014).

6.4 Verifiable and accountable Al

Healthcare requires traceable decisions. Verifiable computation techniques (e.g., zero-
knowledge proofs, secure enclaves) combined with QKD-backed authentication enable
auditors to validate that a reported model output originated from a given signed model
version and training epoch.

7. Privacy, Compliance, and Regulatory Considerations
7.1 Healthcare privacy regimes

Systems must comply with HIPAA (US), GDPR (EU), and other local health data laws.
These require data minimization, purpose limitation, and robust access controls. Our
framework maps these requirements to technical controls:

« Data minimization: prefer training on local data (federation) and transmit only
model updates.

o Purpose limitation: policy engines enforce permissible uses and audit logs record
access.

« Patient consent: cryptographically bound consent tokens (signed and time-
limited) transmitted over QKD channels ensure authenticity.

7.2 Auditability and model governance

Maintain model cards and documentation (Mitchell et al., 2019). Store signed model
artifacts with PQC signatures; QKD keys can authenticate time-sensitive tokens.
Regulatory audits require reproducible training records; ensure proper key-protected logs
and secure snapshotting of training data summaries (not raw data).
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7.3 Data sovereignty and cross-border issues

Quantum networks may cross jurisdictional boundaries. Designs must account for local
data export restrictions; federated models help keep raw data local while allowing model
sharing under governance constraints.

8. Performance and Scalability: Metrics and Trade-offs
8.1 Security vs. latency

QKD and entanglement distribution add setup time and limited throughput compared to
classical links. Healthcare systems often tolerate small latencies for non-urgent model
aggregation, but some clinical workflows (real-time ICU alerts) require low latency. Hybrid
systems designate sensitive control messages for QKD while using classical-PQC for
bulk payloads.

8.2 Key rate and key management

QKD vyields key rates constrained by distance and hardware (tens to thousands of bits
per second to kilobits per second in metropolitan links). Effective key management (key
pools, rotating ephemeral keys) and hybrid encryption strategies are needed to support
frequent federated rounds.

8.3 Computation cost and model size

Federated learning with large models (CNNs for imaging) imposes bandwidth and
compute costs. Techniques to mitigate:

« Model compression: quantization and pruning before transfer.

e Sparse updates: send only significant gradient components.

« Edge inference: move inference to the client and limit aggregation frequency.
8.4 Reliability and fault tolerance

Quantum link outages or high error rates must gracefully degrade to PQC-only modes.
Design the system for graceful fallback with secure rekeying and authenticated failover.

9. Evaluation Framework
9.1 Security evaluation

o Cryptographic guarantees: formal proofs for key secrecy (QKD) and protocol
correctness (MPC).

o Adversarial resilience: simulate passive eavesdroppers, active MITM, and
Byzantine clients.
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o Post-quantum resilience: test classical stored data with PQC.
9.2 Privacy evaluation

« Differential privacy audits: measure privacy budget (\varepsilon) and trade-offs
with utility.

e Membership inference / model inversion tests: quantify leakage from
aggregated models.

9.3 Clinical utility evaluation

« Model performance metrics: AUC, sensitivity/specificity, calibration on held-out
clinical cohorts.

« Operational metrics: end-to-end latency, time-to-model update, key consumption
per aggregation round.

« Human factors: clinician acceptance, auditability, and interpretability metrics.
9.4 Prototype metrics (example)
A pilot across 5 hospitals using QKD-secured aggregation might report:

e« Model AUC = 0.92 (x0.02) on validation.

e Average round trip aggregation latency = 3.2 s (QKD links) vs. 0.6 s (classical).

« Key consumption = 1.2 KB per round; QKD key availability sufficient for 10*4
rounds per day.

These metrics guide operational trade-offs and capacity planning.
10. Deployment Roadmap and Practical Considerations
10.1 Phased adoption

1. Proof-of-concept (PoC): Deploy QKD on short metro links between two hospitals;
run federated training on a small model.

2. Pilot: Scale to a hospital consortium with MPC aggregation and DP; test
compliance reporting.

3. Production: Integrate with national health networks; implement hybrid PQC/QKD
for redundancy.

10.2 Hardware and vendor considerations

o Choose QKD vendors with standardized interfaces; verify interoperability.
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Use HSMs for key storage; ensure tamper resistance.

Integrate with cloud providers that support PQC and secure enclaves where
needed.

10.3 Operational policies

Key rotation schedules, emergency failover, and incident response playbooks.
Staff training for clinicians and IT security teams on quantum-enhanced protocols.

Regular red-teaming and compliance audits.

11. Research Challenges and Open Problems

1.

Quantum repeaters and long-distance entanglement: practical repeaters
remain a key technical bottleneck for wide-area quantum networks.

Scalable QKD for high-throughput ML systems: increasing key rates and cost
reduction are needed.

Quantum-classical algorithm co-design: develop ML models that exploit limited
quantum resources for real advantage.

Formal privacy proofs in quantum-assisted FL: extend DP and leakage
analyses to hybrid quantum settings.

Standards and interoperability: industry standards for QKD integration with Al
workflows are immature.

12. Case Study: Federated Cancer Imaging with QKD-Assisted Aggregation
(IMustrative)

Scenario: Five tertiary hospitals collaborate on a CNN for rare cancer detection. Privacy
and regulatory constraints prevent raw image sharing.

Design:

Local training with client-side data augmentation.

Per-round gradient updates encrypted using session keys from QKD between
each client and aggregator.

Secure aggregation via MPC; DP noise added per client.

Outcomes (simulated):

Utility matched centralized baseline within 1-2% AUC while meeting privacy
budgets of (\varepsilon = 1).
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QKD provided authentication and transport secrecy for 1000 aggregation
rounds/day under metro link constraints.

Operational overhead (latency) increased but remained acceptable for nightly
retraining pipelines.

This case highlights feasibility and trade-offs for clinical collaborations.

13. Standards, Interoperability, and Policy Implications

Standards: Coordinate with emerging efforts (ITU, ETSI, IETF) for QKD and PQC
integration.

Certification: Medical device and software certification bodies must account for
guantum components in risk assessments.

Policy: Policymakers should fund metro quantum testbeds for health research
consortia to accelerate safe adoption.

14. Ethical and Societal Considerations

Equity: Ensure smaller hospitals or low-resource regions are not excluded due to
high QKD costs promote shared testbeds or PQC fallbacks.

Transparency: Maintain explainability of Al systems for patient rights and
regulatory scrutiny.

Dual-use risks: Quantum technologies could also empower malicious actors;
governance and international norms are necessary.

15. Conclusion

Integrating quantum networks with Al architectures offers a promising pathway to
strengthen healthcare systems’ confidentiality, integrity, and resilience. While practical
constraints (hardware maturity, key rates, costs) limit immediate universal deployment,
hybrid architectures combining QKD, PQC, secure aggregation, DP, and hybrid quantum-—
classical ML present a phased, practical approach. Coordination among technologists,
clinicians, regulators, and standards organizations will be essential. The roadmap in this
paper provides a starting point for pilots and research agendas to bring quantum-aware,
privacy-preserving Al into clinical practice.
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