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Abstract  

Ecommerce has matured into a data-intensive ecosystem where consumer behavior, 
logistics, pricing, personalization, and fraud detection are driven by large, heterogeneous 
datasets. Classical AI and data-science pipelines have delivered major productivity and 
revenue gains, yet they face limits in modeling combinatorial recommendation spaces, 
accelerating molecular-scale cryptography for secure transactions, and solving certain 
optimization problems at scale. Quantum Neural Networks (QNNs) and hybrid 
quantum-classical approaches promise novel representational capacity and 
computational primitives that can enrich recommender systems, optimization for supply 
chains, privacy-preserving analytics, and next-generation fraud detection. This article 
synthesizes theory and practice across AI, data science, and QNNs for e-commerce. It 
offers: (1) a conceptual framework linking data modalities and business problems; (2) 
detailed methods for modeling, training, deployment, and evaluation; (3) extended 
technical sections on quantum representations, QNN architectures, and hybrid pipelines 
with reproducible pseudocode; (4) applied case studies (recommendation, dynamic 
pricing, inventory optimization, personalization, fraud detection, privacy); (5) engineering 
and MLOps considerations; (6) an ethics, privacy, and regulatory analysis; and (7) a 
prioritized research and deployment roadmap. The paper targets researchers and 
practitioners aiming to integrate quantum-enhanced AI into production e-commerce 
systems while preserving interpretability, fairness, security, and economic value. 

Keywords: e-commerce, recommender systems, data science, artificial intelligence, 
quantum neural networks, optimization, privacy, fraud detection 

1. Introduction 

1.1 Motivation and scope E-commerce platforms generate and rely upon massive, 
multimodal data streams: clickstreams, transaction logs, product images and 
descriptions, user reviews, inventory feeds, supply-chain telemetry, and third-party 
signals (weather, events). Traditional AI and data-science methodologies (collaborative 
filtering, gradient boosting, deep learning, graph learning) have driven personalized 
recommendations, dynamic pricing, fraud mitigation, and logistics optimization (Ricci et 



 Page 10 of 23 
 

 

 
 
Volume III, Issue I, 2025                                                  Frontier Robotics and Artificial intelligence Journal 

al., 2015; Goodfellow et al., 2016). Nonetheless, specific computational challenges 
remain: the combinatorial complexity of recommendations under constraints, robust 
multi-objective optimization under uncertainty, secure and privacy-preserving cross-party 
learning, and detection of sophisticated fraud that adapts to defenses. Quantum 
computing and Quantum Neural Networks (QNNs) provide alternative computational 
models leveraging superposition and entanglement that may offer advantages on certain 
subproblems (Biamonte et al., 2017; Schuld et al., 2014). This manuscript examines how 
AI, data science, and QNNs can be integrated into e-commerce workflows to advance 
personalization, efficiency, and security while considering technical, ethical, and 
operational constraints. 

1.2 Contributions 

 A unifying framework mapping e-commerce problem to AI and QNN technical 
primitives. 

 Detailed methods for data ingestion, feature engineering, model design, training, 
validation, deployment, and monitoring. 

 In-depth exposition of QNN architectures applicable to ranking, clustering, 
anomaly detection, and combinatorial optimization, with reproducible pseudocode. 

 Case studies demonstrating hybrid quantum-classical pipelines for 
recommendation, dynamic pricing, inventory optimization, privacy-preserving 
cross-platform learning, and fraud detection. 

 Comprehensive discussion of MLOps, governance, regulatory compliance, 
explainability, and ethical considerations. 

 A research and deployment roadmap prioritizing near-term hybrid applications and 
long-term fault-tolerant ambitions. 

1.3 Organization Section 2 surveys e-commerce data modalities and business problems. 
Section 3 reviews classical AI and data-science tools and their limitations. Section 4 
develops quantum computing and QNN foundations. Section 5 proposes hybrid 
architecture and training methods. Section 6 provides technical case studies with 
pseudocode. Section 7 addresses deployment, MLOps, and performance engineering. 
Section 8 discusses privacy, security, ethics, and regulation. Section 9 outlines research 
priorities and a roadmap. Section 10 concludes. 

2. E-commerce problem space and data modalities 

2.1 Business problems and decision classes E-commerce decision tasks span multiple 
horizons and decision granularities: 
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 Instant decisions: click personalization, search ranking, on-page 
recommendations (milliseconds latency). 

 Near-real-time decisions: dynamic pricing, inventory replenishment triggers, fraud 
scoring at checkout (seconds to minutes latency). 

 Batch/strategic decisions: catalog assortment planning, long-horizon demand 
forecasting, supply-chain network design (hours to weeks latency). 

Each class imposes distinct modeling and engineering constraints (latency, 
interpretability, retrain frequency, economic loss functions). 

2.2 Data modalities and schemas 

 Clickstream and session logs: high-velocity event sequences with timestamps, 
session identifiers, and contextual features. 

 Transactional data: order line items, prices, promotions, returns, payment 
methods. 

 Content data: product text, categorical attributes, hierarchical taxonomies, images, 
and video. 

 Reviews and social signals: textual reviews, ratings, sentiment, influencer metrics. 

 Graph data: user–item bipartite interactions, merchant networks, supply-chain 
edges. 

 Operational telemetry: warehouse sensor feeds, shipment GPS, supplier lead 
times. 

 Exogenous data: weather, holidays, macroeconomic indicators, competitor prices. 

2.3 Data quality, labeling, and ground truth challenges Ground truth varies by task: explicit 
conversion events are clear, but usefulness/lifetime value signals are delayed and 
censored. For fraud, labeled data are scarce and adversarial. For personalization, offline 
metrics risk being misaligned with long-term retention and business value. Addressing 
these requires careful outcome modeling (survival analysis, counterfactual estimands) 
and labeling strategies (propensity scoring, human adjudication). 

3. Classical AI and data-science foundations for e-commerce 

3.1 Recommender systems: classes and tradeoffs 

 Collaborative filtering: matrix factorization and latent factors capture user–item 
affinities but struggle with cold start and side information (Koren et al., 2009). 
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 Content-based and hybrid methods incorporate item attributes and deep content 
embeddings (e.g., image and text encoders) to address cold start and semantic 
matching. 

 Session-based recommender models (RNNs, Transformers) model sequential 
dynamics (Hidasi et al., 2016; Kang & McAuley, 2018). 

 Graph-based recommenders (graph convolutional networks) exploit 
multi-relational structures (Wu et al., 2020). 

3.2 Ranking, learning-to-rank, and counterfactual learning Learning-to-rank 
(pointwise/pairwise/listwise) optimizes directly for ranking metrics; counterfactual and 
bandit frameworks are necessary when evaluating policies from logged bandit data to 
avoid selection bias (Joachims et al., 2017). 

3.3 Pricing and inventory optimization Dynamic pricing leverages demand estimation, 
price elasticity, and strategic optimization (reinforcement learning or parametric 
optimization). Inventory optimization involves stochastic optimization under lead times 
and service constraints; approximate dynamic programming and model predictive control 
are widely used. 

3.4 Fraud detection and anomaly detection Supervised classification works for common 
fraud types; network analysis, unsupervised anomaly detectors, and adversarial training 
are crucial for detecting sophisticated or novel fraud patterns. 

3.5 Limitations and computational bottlenecks Classical models face challenges in 
modeling extremely high-dimensional combinatorial action spaces (basket 
recommendations under constraints), solving large NP-hard optimization problems in 
near real time, and enabling secure cross-platform learning without raw data sharing. 
These motivate hybrid quantum-classical approaches for selected subproblems. 

4. Quantum computing and Quantum Neural Networks (QNNs): foundations 

4.1 Quantum computation primer for practitioners Qubits represent quantum states in 
Hilbert space, enabling superposition and entanglement. Quantum gates enact unitary 
transforms; measurement collapses states to classical outcomes. Two practical device 
families are relevant: gate-model NISQ devices (superconducting, trapped ions) and 
quantum annealers (optimization-oriented). NISQ devices are noisy; hybrid variational 
algorithms mitigate noise by shifting classical optimization workloads (Preskill, 2018). 

4.2 Quantum algorithms of interest to e-commerce 

 Quantum optimization (QAOA, quantum annealing) maps combinatorial 
optimization problems to quantum cost Hamiltonians (Farhi et al., 2014). 
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 Quantum simulation and amplitude amplification can accelerate certain 
subroutines (Grover search) relevant to database search and inner-product 
computations. 

 Quantum machine learning (QML), including QNNs and quantum kernels, offers 
alternative feature maps and model classes (Biamonte et al., 2017; Schuld et al., 
2014). 

4.3 Quantum Neural Networks: architectures and properties QNNs are parameterized 
quantum circuits (PQCs) with trainable gates acting as layers; outputs are expectation 
values of observables measured on circuit states. Key elements: encoding/feature maps 
(how classical data are embedded into quantum states), ansatz/variational layers 
(parameterized unitaries), measurement schemes, and classical optimizers (Guerreschi 
& Smelyanskiy, 2017). Prospective advantages include high-dimensional feature 
embeddings accessible via quantum Hilbert space and potential sample complexity 
benefits in some kernels. 

4.4 Practical constraints and NISQ considerations 

 Circuit depth and qubit connectivity limit model expressivity on current hardware. 

 Barren plateaus (vanishing gradients) and noise-induced errors complicate 
training; hardware-aware ansatz design and error mitigation are required (Cerezo 
et al., 2021). 

 For near-term e-commerce use, hybrid quantum-classical approaches run small 
QNNs for representation learning or use quantum annealing for combinatorial 
searches while delegating bulk training and inference to classical infrastructure. 

5. Hybrid architectures: integrating classical AI, data science, and QNNs 

5.1 Design patterns for hybrid systems 

 Preprocessing and feature engineering remain classical; quantum modules are 
invoked for targeted subproblems (ranking re-ranking stages, combinatorial 
optimization, kernel estimation). 

 Two-stage recommendation: classical candidate generation (fast recall) followed 
by QNN-based re-ranking for hard tradeoffs (diversity, inventory constraints). 

 Quantum-assisted optimization: use QAOA or annealing to propose near-optimal 
bundles or shipping allocations, validated with classical simulation. 

5.2 Data representation and quantum encoding choices 
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 Angle encoding: map scalar features to rotation angles; efficient for small feature 
vectors. 

 Amplitude encoding: compact superposition of normalized vectors; potentially 
exponential compression but requires complex state preparation. 

 Hybrid embeddings: classical neural encoders reduce raw modalities to compact 
vectors (e.g., 16–64 dims) that are then amplitude/angle encoded into QNNs. 

5.3 Training regimes and loss designs 

 Hybrid training with classical optimizers (SPSA, Adam) updating quantum 
parameters via gradient estimates (parameter-shift rule) for QNNs; use classical 
losses aligned with business objectives (ranking loss, NDCG, profit-weighted 
objectives). 

 Meta-learning and transfer: pretrain classical encoders on abundant data and 
fine-tune QNN readouts on specific constrained optimization tasks. 

5.4 System orchestration and latency considerations 

 For user-facing low-latency tasks, QNN modules must be confined to milliseconds 
to seconds. Practical deployments use quantum accelerators asynchronously or 
in cached re-ranking contexts where latency budgets are larger. 

 Batch and overnight optimization tasks (assortment planning, large-scale 
combinatorial allocation) are excellent QNN/annealer candidates. 

6. QNN architectures and algorithms applied to e-commerce tasks 

6.1 QNN design for re-ranking and personalization Objective: given candidate items and 
contextual features, produce a personalized re-rank that maximizes expected lifetime 
value subject to constraints (inventory, margin, fairness). 

Architecture: 

 Classical encoder E(x_user, x_context, x_item) → z ∈ R^d (d small, e.g., 16). 

 Quantum feature map U(φ(z)) embeds z into qubits; variational layers V(θ) 
implement parameterized unitaries; measurement returns expectation values ŷ. 

 Loss: cross entropy on click/conversion labels weighted by expected revenue; 
additional constraint penalties (Lagrangian) appended for margin and fairness. 

Pseudocode (QNN re-ranking training loop): 

text 
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Input: dataset D = {(user, context, candidates, label_relevances, revenue)} 

for batch in D: 

    z_batch = E(batch) 

    for i in candidates: 

        state = PrepareQuantumState(z_batch[i])  # feature map 

        for l in 1..L: 

            state = V_layer(state, theta_l) 

        y_hat[i] = MeasureExpectation(state) 

    loss = WeightedRankingLoss(y_hat, label_relevances, revenue_weights) + 
ConstraintPenalties(y_hat) 

    theta = ClassicalOptimizerStep(theta, loss) 

6.2 Quantum kernels for similarity and cold-start bridging Quantum kernel methods 
compute inner products in implicitly high-dimensional Hilbert space via quantum circuits. 
For cold start, map user/item meta features into quantum kernels and use kernelized ridge 
regression or SVMs to estimate affinities with small labeled data (Havlíček et al., 2019). 

6.3 QAOA for combinatorial bundling and assortment optimization Encode discrete 
selection (which items to bundle given constraints) into cost Hamiltonian; run QAOA to 
sample low-energy bitstrings representing candidate bundles. Combine with classical 
heuristics (local search) to refine selections. 

Pipeline (QAOA integrated): 

 Formulate QUBO representing objective (expected revenue minus substitution 
costs) and constraints (inventory, shipping). 

 Translate QUBO → Ising Hamiltonian; instantiate QAOA circuit depth p. 

 Optimize variational angles γ, β classically; sample candidate solutions; rank 
solutions by expected profit; feed top K to classical validation. 

6.4 Quantum anomaly detection for fraud QNN-based autoencoder analogs: encode 
transactional patterns into quantum latent codes; reconstruct and measure reconstruction 
error as anomaly signal. Hybrid approach: classical encoder → small QNN latent 
transform → classical decoder to reconstruct; use reconstruction loss as fraud score. 

6.5 Complexity, sample efficiency, and expected benefits Theoretical and empirical 
evidence for QNN advantage is nascent; selected use cases where QNNs may offer value 
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include high-dimensional kernel embeddings for small-label regimes, sampling from 
complex combinatorial posterior distributions, and leveraging amplitude encoding to 
compactly represent structured item features. Practical value depends on problem 
structure, hardware maturity, error rates, and integration costs (Biamonte et al., 2017; 
Schuld et al., 2014). 

7. Case studies: hybrid quantum-classical applications in e-commerce 

7.1 Case study 1 — Candidate generation + QNN re-ranking for personalization 
(production-style pipeline) 

Problem: Improve conversion lift and long-term revenue by reranking classical recall 
candidates under margin and inventory constraints. 

Pipeline: 

 Stage A: Candidate generation (classical): fast nearest neighbors via approximate 
embeddings (FAISS) or item popularity heuristics. 

 Stage B: Feature fusion (classical): compute E(user, item, session) vectors. 

 Stage C: QNN re-rank: embed vectors into QNN, run inference to obtain scores 
with constraint penalties, apply post-processing (deduplication, inventory filter). 

 Stage D: A/B test served via canary rollout; monitor conversion, revenue per 
session, and margin. 

Evaluation: offline NDCG, expected revenue uplift in simulation with counterfactual 
corrections (logged bandit data methods); online randomized experiments for causal 
validation. 

7.2 Case study 2 — QAOA for Bundling and Assortment under Shipping Constraints 

Problem: select assortments per region to maximize expected margin net of shipping 
costs and stockouts under stochastic demand. 

Approach: formulate binary decision variables for item inclusion; build QUBO objective 
with penalty terms. Use QAOA to sample high-quality assortments, refine via tabu search, 
and compare against classical integer programming baselines (Gurobi) on medium-scale 
instances. 

Outcomes: evaluate solution quality (objective gap), runtime (wall clock and quantum 
queue time), and economic impact via offline simulations. 

7.3 Case study 3 - Quantum-enhanced fraud detection with QNN embeddings 
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Problem: detect coordinated checkout fraud where attackers simulate legitimate 
purchase patterns with minor perturbations. 

Hybrid method: construct per-user session embeddings; train QNN encoder to map 
embeddings into a latent Hilbert space where malicious distributions separate; use 
classical classifier on QNN outputs. 

Evaluation: AUC, precision@k at investigator workload constraints, and adversarial 
robustness under simulated attacker strategies (poisoning, evasion). 

7.4 Case study 4 - Privacy-preserving cross-platform recommendations 

Problem: collaborative learning across multiple retailers increases recommendation 
quality but sharing raw user identifiers violates privacy. 

Solution: federated learning augmented with quantum kernels for local feature 
transformation; encrypt model updates and aggregate with secure multiparty 
computation. Samuel (2022) and Samuel (2024) demonstrate similar cloud-native 
architectures for secure data exchange and privacy-focused analytics in energy systems; 
analogous architectures apply to e-commerce cross-platform collaborations (Samuel, 
2022; Samuel, 2024). 

8. Training, optimization, and evaluation protocols 

8.1 Training QNNs: optimizer choices and gradient estimation 

 Use gradient-free optimizers (COBYLA, SPSA) and gradient-based with 
parameter-shift rule depending on circuit differentiability and noise levels. 

 Employ minibatch classical training for outer loops; within each minibatch, estimate 
quantum expectation via repeated shots; amortize measurement budgets. 

8.2 Regularization, constraints, and constrained losses 

 Incorporate Lagrangian multipliers for inventory, fairness, or margin constraints; 
update multipliers via classical dual ascent during training. 

 Use constrained policy gradients for RL-type optimization in dynamic pricing. 

8.3 Evaluation metrics and offline/online alignment 

 Offline proxies: NDCG, MRR, expected revenue, calibration metrics, AUC for 
binary tasks. 

 Value-oriented metrics: revenue lift, margin per session, customer lifetime value 
uplift. 



 Page 18 of 23 
 

 

 
 
Volume III, Issue I, 2025                                                  Frontier Robotics and Artificial intelligence Journal 

 Use contextual bandit evaluation or off-policy estimators for logged data to 
estimate causal effects (Dudík et al., 2014). 

8.4 Robust validation: adversarial and distribution shift testing 

 Simulate seasonal shifts, catalog changes, and adversarial manipulations. 

 Use robust optimization and distributionally robust training where suitable. 

9. MLOps, orchestration, and system engineering 

9.1 Data pipelines and feature stores 

 Continuous ingestion pipelines handle events at scale; event time semantics and 
watermarking ensure correctness. 

 Feature stores maintain offline/online parity, freshness guarantees, and lineage 
(Sculley et al., 2015). 

9.2 Model registry, experimentation, and deployment patterns 

 Model registry stores artifacts, metrics, and model cards. 

 Canary and shadow deployments provide safety; rollback policies and automated 
monitors mitigate regressions. 

9.3 Monitoring: technical signals and business KPIs 

 Technical signals: prediction latency, error rates, model drift, feature distribution 
changes. 

 Business KPIs: conversion, average order value, churn, fraud rates. 

 Explainability monitoring: track SHAP distributions and alerts for unexpected 
feature shifts. 

9.4 Cost, scaling, and hybrid compute economics 

 Quantum runtime costs include queue time and access fees; hybrid designs 
minimize quantum calls and use classical proxies where possible. Cost–benefit 
analyses compare improved business metrics against quantum access and 
integration costs. 

10. Privacy, security, and legal considerations 

10.1 Data privacy and differential privacy for e-commerce 
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 Apply differential privacy for sensitive aggregates (user profiles), and use local DP 
for telemetry where possible. Federated learning reduces raw data sharing 
(McMahan et al., 2017). 

10.2 Secure model serving and model inversion risks 

 Protect model APIs with rate limits and authentication; monitor for model extraction 
and membership inference. Quantum-era cryptography and post-quantum secure 
channels should be planned, though current threats are limited (NIST PQC 
initiatives). 

10.3 Regulatory landscape and consumer rights 

 GDPR and consumer protection laws require explainability and right to objection 
for automated profiling; ensure human-in-loop and recourse mechanisms. 

10.4 Ethical considerations: fairness, manipulation, and consumer welfare 

 Personalization must balance relevance and fairness; avoid exploitative pricing. 
Implement fairness constraints and human oversight for price personalization. 

11. Fraud, adversarial resilience, and economic defenses 

11.1 Adversarial threat taxonomy in e-commerce 

 Account takeover, synthetic identity creation, coupon abuse, return fraud, 
triangulation fraud; attackers adapt to detection through adversarial mimicry. 

11.2 Defensive strategies and game-theoretic modeling 

 Use multi-agent simulations to model attacker–defender dynamics; design 
detection systems robust to adaptive attackers; incorporate economic costs of 
false positives into detection thresholds. 

11.3 Quantum-enabled cryptographic primitives and secure exchanges 

 Quantum computing may enable new cryptographic protocols; concurrently, 
post-quantum cryptography is needed to protect data against future quantum 
adversaries. Samuel (2022, 2024) discuss secure cloud-native AI transfer 
protocols and privacy concerns in energy systems applicable to e-commerce 
secure exchanges (Samuel, 2022; Samuel, 2024). 

12. Interpretability, transparency, and human factors 

12.1 Auditable model cards and documentation 
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 Produce model cards for each production model capturing intent, datasets, 
performance, fairness tests, and limitations (Mitchell et al., 2019). 

12.2 Human interface design for model explanations 

 Give investigators concise prioritized rationales; provide actionable insights rather 
than raw feature attributions. 

12.3 Organizational change management 

 Training for product, customer service, and legal teams on AI workflows; establish 
protocols for contested decisions and appeals. 

13. Evaluation of quantum readiness and practical adoption criteria 

13.1 Problem selection heuristic for quantum pilots 

 Prioritize problems where: (a) classical baselines struggle or are computationally 
intensive; (b) labeled data are scarce but structure is amenable to kernel methods; 
(c) problem scales are moderate enough for NISQ exploration; (d) economic 
upside justifies integration costs. 

13.2 Benchmarks and success metrics for pilots 

 Define success via improvement in business KPIs, solution quality gaps, total cost 
of ownership, and operational reliability. 

13.3 Integration maturity model 

 Stages: exploration (simulators), hybrid pilots (small quantum tasks + classical 
validation), scaled hybrid (repeatable processes), and long-term fault-tolerant 
integration. 

14. Research agenda and roadmap 

14.1 Near-term research priorities (0–2 years) 

 Develop robust hybrid architectures and benchmark datasets for re-ranking and 
combinatorial recommendation tasks. 

 Advance QNN ansatz design resilient to barren plateaus and noise. 

 Empirical studies comparing quantum kernels to classical kernels in small-label, 
high-dimensional regimes. 

14.2 Medium-term priorities (2–5 years) 
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 Federated quantum-classical learning frameworks for privacy-sensitive 
cross-platform analytics. 

 QAOA and heuristic benchmarking for real-world assortment and routing 
problems. 

 Adversarial robustness methods combining quantum encodings and classical 
defenses. 

14.3 Long-term ambitions (5+ years) 

 Fault-tolerant quantum models for large combinatorial optimizations at scale. 

 Integration of quantum cryptographic primitives into e-commerce transaction 
systems. 

 Institutional adoption pathways and regulatory standards for quantum-assisted AI 
systems. 

15. Limitations, risks, and open challenges 

15.1 Technical limitations and uncertainty of quantum advantage 

 Evidence for practical quantum advantage in ML is still limited; careful 
benchmarking and realistic evaluations are necessary (Preskill, 2018). 

15.2 Integration, operational, and human factors risks 

 Integration complexity, personnel training, and organizational inertia impede 
adoption. Economic viability depends on both performance gains and total cost of 
integration. 

15.3 Ethical risks and societal impact 

 Personalization and pricing algorithms may exacerbate inequality or manipulate 
consumer choice if unchecked; design for consumer welfare is essential. 

16. Conclusion AI and data science will continue to drive e-commerce innovation. 
QNNs and hybrid quantum-classical approaches offer promising new tools for 
specific, computationally demanding subproblems in recommendation, 
combinatorial optimization, and adversarial detection. Responsible integration 
demands rigorous method design, realistic evaluation, privacy and security 
protections, and ethical governance. The roadmap herein guides researchers and 
practitioners through piloting, validating, and scaling quantum-enhanced AI in 
e-commerce with scholarly rigor and industrial pragmatism. 
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