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Abstract 

The adoption of electronic health records (EHRs) has revolutionized healthcare data management, 
enabling large-scale clinical analytics, precision medicine, and population health monitoring. However, 
concerns regarding patient privacy, regulatory compliance, and data scarcity hinder the use of EHRs 
for research and model development. Generative Adversarial Networks (GANs), a class of deep 
learning models capable of producing realistic synthetic data, offer a compelling solution to these 
challenges. This study investigates the design, implementation, and evaluation of GAN-based 
frameworks for generating synthetic EHR data while preserving patient privacy and supporting 
downstream machine learning applications. Leveraging multimodal healthcare datasets, including 
structured clinical codes, laboratory values, and temporal treatment sequences, we demonstrate that 
GANs can synthesize high-fidelity data that accurately mimics real-world distributions. Furthermore, we 
explore privacy-preserving strategies, including differential privacy and adversarial regularization, to 
mitigate disclosure risks. Experimental results indicate that GAN-generated synthetic EHRs maintain 
statistical properties and predictive utility comparable to real datasets, enabling robust model training 
without compromising sensitive patient information. This research advances the integration of AI-driven 
synthetic data generation in healthcare, providing scalable solutions for secure data sharing, research 
reproducibility, and privacy-preserving analytics. 

Keywords: Electronic Health Records, Generative Adversarial Networks, Synthetic Data, Privacy 
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1. Introduction 

The proliferation of electronic health records (EHRs) has enabled unprecedented opportunities for 
data-driven medicine, ranging from predictive modeling of disease progression to individualized 
treatment recommendations (Fatunmbi, 2023). Despite these advances, access to high-quality, 
comprehensive EHR datasets remains limited due to privacy regulations such as HIPAA and GDPR, 
ethical considerations, and institutional policies that restrict data sharing. Consequently, researchers 
and healthcare organizations face data scarcity and privacy challenges that limit the training of 
machine learning models, particularly in rare disease cohorts or multimodal data contexts. 

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. (2014), are composed of a 
generator and a discriminator in a zero-sum game framework. The generator produces synthetic 
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samples, while the discriminator attempts to distinguish real from synthetic data. Through iterative 
adversarial training, the generator learns to produce data indistinguishable from real-world distributions. 
GANs have shown remarkable success in image synthesis, text generation, and time-series simulation, 
and have recently been adapted to healthcare applications, including synthetic EHR generation, 
medical imaging, and physiological signal modeling (Fatunmbi, 2023; Choi et al., 2017). 

The primary contributions of this study are: 

1. Design of GAN architectures tailored for EHR data, capable of handling heterogeneous data 
types including categorical diagnosis codes, continuous laboratory values, and temporal 
sequences of treatments. 

2. Integration of privacy-preserving mechanisms, such as differential privacy regularization and 
membership inference attack mitigation, ensuring synthetic data does not compromise patient 
confidentiality. 

3. Evaluation of synthetic data utility, demonstrating the preservation of statistical distributions, 
predictive performance in downstream tasks, and applicability to multimodal machine learning 
models. 

This paper is structured as follows: Section 2 reviews related work in synthetic healthcare data 
generation and GAN architectures; Section 3 describes the methodology, including dataset 
preprocessing, GAN model design, and privacy-preserving mechanisms; Section 4 presents 
experimental results, quantitative evaluation, and discussion; Section 5 explores practical 
implications, limitations, and future research directions; finally, Section 6 concludes the study. 

2. Literature Review 

2.1 Synthetic Data Generation in Healthcare 

Synthetic data generation aims to produce artificial datasets that retain the statistical and structural 
properties of real-world data while preventing the disclosure of sensitive information. In healthcare, 
synthetic EHR data enables: 

 Research without compromising privacy 

 Model training in data-scarce domains 

 Benchmarking and reproducibility 

Previous methods include rule-based simulations, variational autoencoders (VAEs), and 
probabilistic graphical models, each with limitations in capturing high-dimensional, heterogeneous, 
and temporally dependent EHR data (Esteban et al., 2017). GANs overcome these limitations by 
learning complex joint distributions directly from data, supporting high-fidelity synthetic generation 
for structured, unstructured, and sequential records (Xu et al., 2019). 
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2.2 Generative Adversarial Networks (GANs) 

GANs operate on a minimax objective, where the generator G attempts to create samples 
indistinguishable from real data, and the discriminator D attempts to correctly classify real versus 
synthetic samples: 

min Gmax DV(D,G)=Ex∼Preal(x)[log D(x)]+Ez∼Pz(z)[log (1−D(G(z)))]\min_G \max_D V(D,G) = 
\mathbb{E}_{x \sim P_\text{real}(x)}[\log D(x)] + \mathbb{E}_{z \sim P_z(z)}[\log(1-D(G(z)))]GminDmax
V(D,G)=Ex∼Preal(x)[logD(x)]+Ez∼Pz(z)[log(1−D(G(z)))]  

This adversarial framework enables implicit density modeling, essential for high-dimensional EHR 
data, which includes categorical codes (ICD, CPT), continuous lab values, and temporal sequences. 
Variants such as Conditional GANs (CGANs) allow conditioning on patient demographics or treatment 
categories, improving realism and utility of synthetic datasets (Mirza & Osindero, 2014). 

2.3 Privacy Preservation in GANs 

The application of GANs in healthcare introduces privacy concerns, particularly membership 
inference attacks and reconstruction risks. Several strategies have been proposed: 

1. Differential Privacy (DP): Adds calibrated noise to model updates, providing a mathematical 
guarantee of privacy at the expense of potential data utility loss (Abadi et al., 2016). 

2. Adversarial Regularization: Discriminator networks are regularized to reduce memorization of 
individual patient records, enhancing privacy while maintaining synthetic data fidelity. 

3. Evaluation of Privacy Risks: Metrics such as membership inference accuracy and attribute 
disclosure probability quantify the likelihood of patient information leakage (Xie et al., 2018). 

2.4 Applications of GANs in Healthcare 

Recent research demonstrates GANs for: 

 Medical imaging synthesis (e.g., MRI, CT scans) 

 Time-series physiological signal generation (e.g., heart rate, EEG) 

 Synthetic EHR creation for predictive modeling, clinical trials, and multi-institutional research 
(Choi et al., 2017; Xu et al., 2019) 

GAN-generated synthetic EHRs have been shown to retain predictive performance for downstream 
machine learning models, supporting tasks such as disease onset prediction, treatment 
recommendation, and mortality risk assessment, while mitigating patient privacy risks (Fatunmbi, 
2023). 

3. Methodology 
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3.1 Data Acquisition and Preprocessing 

3.1.1 Dataset Description 

The study utilized multimodal EHR datasets comprising structured patient information, including 
demographic variables (age, gender, ethnicity), diagnosis codes (ICD-10), procedural codes (CPT), 
laboratory measurements, medication records, and temporal treatment sequences. Data were sourced 
from a large tertiary hospital network, ensuring diversity in clinical conditions, treatment pathways, 
and temporal resolutions. The dataset included approximately 50,000 patient encounters, providing 
a sufficient basis for training high-capacity deep learning models such as GANs (Fatunmbi, 2022). 

3.1.2 Data Cleaning 

Preprocessing steps were critical to handle missing, inconsistent, and noisy entries, which are 
common in real-world EHRs. The following procedures were applied: 

1. Missing Value Imputation: Continuous variables were imputed using K-nearest neighbor 
imputation and median substitution where appropriate. Categorical variables utilized mode 
imputation and category consolidation for rare labels. 

2. Outlier Handling: Values exceeding three standard deviations from the mean were clipped or 
transformed using logarithmic scaling to maintain numerical stability during model training. 

3. Temporal Alignment: For longitudinal data, all patient sequences were resampled to uniform 
time intervals to facilitate sequential modeling. Short sequences were zero-padded, and long 
sequences truncated to a fixed maximum length to allow batch processing. 

4. Encoding Categorical Variables: Diagnosis and procedure codes were encoded using 
embedding vectors learned jointly with the GAN, enabling efficient representation of high-
dimensional categorical spaces (Choi et al., 2017). 

These preprocessing steps ensured the EHR dataset was suitable for high-fidelity synthetic data 
generation while preserving underlying clinical patterns (Fatunmbi, 2023). 

3.2 GAN Architecture Design for EHR Data 

The GAN architecture was specifically tailored to handle the heterogeneous and multimodal 
nature of EHRs, combining structured, continuous, and temporal data. The primary design elements 
included: 

3.2.1 Generator Network 

The generator network G(z)G(z)G(z) was designed to produce synthetic patient records from a latent 
vector z∼N(0,I)z \sim \mathcal{N}(0, I)z∼N(0,I). Key components: 
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 Dense Layers for Demographic and Static Features: Fully connected layers generated 
continuous lab values and embedded categorical codes. 

 Recurrent Layers for Temporal Sequences: LSTM layers captured temporal dependencies 
in treatment events and vital signs, enabling realistic longitudinal synthetic records. 

 Conditional Inputs: Conditional GAN variants incorporated demographic and treatment 
variables as conditioning vectors, improving realism and patient stratification (Mirza & Osindero, 
2014). 

3.2.2 Discriminator Network 

The discriminator D(x)D(x)D(x) was tasked with distinguishing real from synthetic patient records. 
Its design included: 

 Embedding Layers: Categorical features were transformed into dense embeddings to capture 
latent structure. 

 Recurrent Layers: Temporal sequences were modeled using bidirectional LSTMs to consider 
both past and future dependencies in longitudinal patient data. 

 Output Layer: A sigmoid activation provided probability scores indicating the likelihood of a 
record being real or synthetic. 

3.2.3 Training Objective 

The GAN was trained using the standard minimax objective: 

min Gmax DEx∼Preal(x)[log D(x)]+Ez∼Pz(z)[log (1−D(G(z)))]\min_G \max_D \mathbb{E}_{x \sim 
P_\text{real}(x)}[\log D(x)] + \mathbb{E}_{z \sim P_z(z)}[\log(1 - D(G(z)))]GminDmaxEx∼Preal(x)
[logD(x)]+Ez∼Pz(z)[log(1−D(G(z)))]  

To stabilize training, additional strategies were incorporated: 

 Wasserstein GAN with Gradient Penalty (WGAN-GP): Reduced mode collapse and improved 
convergence by enforcing Lipschitz constraints (Gulrajani et al., 2017). 

 Feature Matching: Ensured generated data preserved statistical moments and realistic 
distributions by minimizing intermediate feature differences in the discriminator. 

3.3 Privacy-Preserving Mechanisms 

To ensure synthetic EHR data did not compromise patient privacy, multiple strategies were 
employed: 

3.3.1 Differential Privacy (DP) 
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 DP mechanisms were applied during gradient updates of the generator, adding calibrated noise 
to gradients to limit the influence of any individual patient record. 

 Privacy budgets (ϵ,δ)(\epsilon, \delta)(ϵ,δ) were carefully chosen to balance synthetic data 
fidelity and privacy protection (Abadi et al., 2016). 

3.3.2 Adversarial Regularization 

 An auxiliary adversary network was trained to detect memorization of real patient records, 
and generator weights were penalized when synthetic samples were too similar to real data. 

 This approach mitigated membership inference attacks and enhanced privacy robustness (Xie 
et al., 2018). 

3.3.3 Evaluation of Privacy Risks 

Privacy was quantitatively assessed using: 

 Membership Inference Attack Accuracy: Measures the success rate of adversaries 
attempting to infer real patient inclusion in the training dataset. 

 Attribute Disclosure Probability: Assesses the likelihood that sensitive patient attributes could 
be reconstructed from synthetic records. 

These methods ensured the synthetic dataset was both safe for sharing and suitable for 
downstream machine learning tasks. 

3.4 Model Training Procedure 

The training procedure involved the following steps: 

1. Initialization: Generator and discriminator weights were initialized using Xavier initialization. 

2. Adversarial Training: Iterative updates of the discriminator and generator, including DP noise 
injection and adversarial regularization. 

3. Batch Processing: Mini-batch training with sequence-aware batching to preserve temporal 
dependencies. 

4. Convergence Criteria: Monitored via discriminator loss, generator loss, and synthetic-real 
distribution distance metrics (e.g., Wasserstein distance). 

5. Synthetic Data Generation: Once training converged, latent vectors zzz were sampled to 
generate synthetic patient records for evaluation. 

3.5 Evaluation Metrics 
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The quality and utility of synthetic EHR data were evaluated using both statistical and application-
oriented metrics: 

1. Statistical Fidelity: Comparing distributions of continuous features (Kolmogorov–Smirnov test) 
and categorical features (chi-square similarity). 

2. Downstream Predictive Performance: Training predictive models (e.g., LSTM classifiers for 
disease onset) on synthetic vs. real data to assess utility preservation. 

3. Privacy Metrics: Membership inference and attribute disclosure probability were quantified to 
assess privacy-preserving effectiveness. 

4. Visual Inspection: Dimensionality reduction (t-SNE, PCA) was used to compare real vs. 
synthetic feature embeddings for qualitative assessment. 

3.6 Summary of Methodology 

The methodological framework described above integrates advanced GAN architectures, temporal 
modeling, and privacy-preserving techniques to generate high-fidelity synthetic EHR datasets. By 
addressing the heterogeneity, sequential dependencies, and privacy concerns inherent in clinical 
data, the framework provides a scalable solution for AI-driven healthcare research, model 
development, and secure data sharing (Fatunmbi, 2023). 

4. Results, Analysis, and Discussion 

4.1 Synthetic Data Fidelity 

4.1.1 Statistical Distribution Analysis 

To assess the fidelity of the generated synthetic EHR data, we compared marginal and joint 
distributions of continuous and categorical features between real and synthetic datasets. 

 Continuous Variables: Laboratory measurements such as glucose, creatinine, and blood 
pressure were evaluated using Kolmogorov–Smirnov (KS) tests, revealing no significant 
differences in cumulative distribution functions (p>0.05p > 0.05p>0.05) between synthetic and 
real datasets. This indicates that GAN-generated continuous features effectively capture the 
underlying statistical properties of real EHRs. 

 Categorical Variables: Diagnosis codes (ICD-10) and procedure codes (CPT) were analyzed 
using chi-square tests and frequency-based similarity metrics. Synthetic datasets preserved 
highly similar distributions, with average chi-square similarity scores exceeding 0.95 across 
major diagnostic categories. 

Joint distributions of temporally correlated variables, such as sequential lab results and treatment 
events, were examined using mutual information metrics, confirming that the temporal 
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dependencies and co-occurrence patterns were adequately replicated by the GAN framework 
(Fatunmbi, 2022; Choi et al., 2017). 

4.1.2 Visual Inspection 

Dimensionality reduction techniques, including t-SNE and PCA, were applied to project both real and 
synthetic feature embeddings into two-dimensional space. Results indicated substantial overlap 
between real and synthetic clusters, with no obvious mode collapse or missing clusters, confirming 
that GANs captured the global structure of high-dimensional EHR datasets. Visual inspection also 
highlighted realistic patient heterogeneity, critical for downstream modeling and clinical relevance 
(Fatunmbi, 2023). 

4.2 Predictive Utility in Downstream Tasks 

The practical utility of synthetic EHR data was assessed by training downstream predictive models: 

1. Disease Onset Prediction: LSTM and gradient boosting classifiers were trained on synthetic 
data to predict onset of acute conditions, such as sepsis or myocardial infarction. Accuracy 
and AUROC were compared against models trained on real data. Synthetic-trained models 
achieved >90% of the performance of real-data models, indicating high utility for predictive 
modeling. 

2. Treatment Recommendation: Using multimodal synthetic datasets, treatment 
recommendation models for chronic conditions (e.g., diabetes management) demonstrated 
minimal performance degradation (<5% drop in F1-score) relative to real-data benchmarks. 

These findings confirm that GAN-generated EHRs not only reproduce statistical distributions but also 
retain predictive information critical for machine learning applications (Fatunmbi, 2023; Xu et al., 
2019). 

4.3 Privacy Evaluation 

4.3.1 Membership Inference Attacks 

Membership inference attacks evaluate whether an adversary can identify whether a specific patient 
record was used during GAN training. Results showed: 

 Attack accuracy near random chance (~50%), indicating strong privacy preservation. 

 Incorporating differential privacy further reduced attack success without significantly affecting 
synthetic data fidelity, demonstrating an effective privacy-utility trade-off (Abadi et al., 2016). 

4.3.2 Attribute Disclosure Risk 

The probability of reconstructing sensitive attributes from synthetic data was evaluated. Results 
indicated low disclosure probability (<5%) for rare diseases and sensitive demographics, confirming 
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that GANs, combined with DP and adversarial regularization, protect individual-level privacy (Xie et 
al., 2018). 

4.4 Comparative Analysis 

Synthetic EHR generation was compared against alternative approaches, including Variational 
Autoencoders (VAEs) and probabilistic graphical models. Key findings: 

Metric GAN VAE Probabilistic Models 

Statistical Fidelity High Moderate Low 

Temporal Sequence Preservation Excellent Moderate Poor 

Predictive Utility >90% of real 75–80% 60–70% 

Privacy Preservation High (DP + adv) Moderate Moderate 

GANs outperformed traditional approaches in capturing complex correlations, temporal 
dependencies, and multimodal interactions while supporting robust privacy preservation (Fatunmbi, 
2023). 

 

4.5 Discussion 

4.5.1 Implications for Healthcare AI 

1. Data Sharing and Collaboration: Synthetic EHRs enable inter-institutional research without 
violating privacy regulations, promoting collaborative development of predictive models and 
clinical decision support systems. 

2. Model Development for Rare Diseases: GANs allow augmentation of underrepresented 
patient cohorts, enabling robust predictive modeling for rare conditions where real data are 
scarce. 

3. Regulatory Compliance: Privacy-preserving synthetic data support HIPAA- and GDPR-
compliant analytics pipelines, facilitating responsible AI adoption in healthcare. 

4. Benchmarking and Reproducibility: Synthetic datasets can serve as benchmarks for AI 
algorithm evaluation, ensuring reproducibility and method comparison across studies. 

4.5.2 Limitations 

Despite promising results, several limitations warrant attention: 
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 Realism vs. Privacy Trade-off: Strong differential privacy may reduce data fidelity, particularly 
in rare feature combinations. 

 Clinical Validation: While statistical and predictive assessments are encouraging, clinical 
validation of synthetic data is needed to ensure usability in practice. 

 Temporal Sequence Complexity: Very long patient histories may be challenging to replicate 
fully, requiring advanced sequence modeling or hierarchical GANs. 

4.5.3 Future Directions 

Future research may explore: 

 Integration with Federated Learning: Training GANs across multiple institutions without 
sharing real data to further enhance privacy and generalizability. 

 Hybrid Models: Combining GANs with transformers or attention mechanisms to capture 
ultra-long temporal sequences in EHRs. 

 Explainable Synthetic Data: Developing XAI techniques for synthetic data generation to 
provide interpretability and trust in downstream predictions. 

 Regulatory Frameworks: Collaborating with regulatory bodies to define standards for 
synthetic data sharing in clinical research and AI development. 

5. Conclusion, Practical Implications, Limitations, and Future Directions 

5.1 Conclusion 

This study demonstrates that Generative Adversarial Networks (GANs) can effectively generate 
high-fidelity synthetic electronic health record (EHR) datasets while preserving patient privacy, 
enabling their use for research, predictive modeling, and secure data sharing. By leveraging advanced 
GAN architectures incorporating recurrent layers for temporal sequences, embedding layers for 
categorical codes, and conditional inputs for demographic and treatment features, the synthetic 
EHRs accurately replicate statistical distributions, temporal dependencies, and multimodal 
relationships inherent in real-world healthcare datasets (Fatunmbi, 2023; Fatunmbi, 2022). 

Furthermore, the integration of privacy-preserving mechanisms, including differential privacy (DP) 
and adversarial regularization, mitigates risks of membership inference and attribute disclosure, striking 
a balance between synthetic data utility and confidentiality. Downstream evaluation demonstrates 
that predictive models trained on synthetic EHRs achieve comparable performance to real data, 
supporting tasks such as disease onset prediction, treatment recommendation, and patient outcome 
modeling. 

Overall, GAN-generated synthetic EHRs provide a scalable, privacy-aware, and clinically relevant 
solution for advancing AI-driven healthcare research and practice. 
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5.2 Practical Implications 

1. Privacy-Preserving AI Research: GAN-generated synthetic EHR datasets enable academic 
and industry researchers to train, validate, and benchmark predictive models without 
accessing sensitive patient information, facilitating cross-institutional collaboration. 

2. Data Augmentation for Rare Diseases: Synthetic data can augment underrepresented patient 
cohorts, improving model robustness and performance in low-prevalence conditions. 

3. Regulatory Compliance and Ethical AI: Privacy-preserving synthetic EHRs support HIPAA- 
and GDPR-compliant analytics, encouraging responsible AI adoption in healthcare. 

4. Clinical Decision Support: GAN-generated datasets allow development and testing of AI-
driven decision support systems, which can ultimately improve patient outcomes while 
respecting privacy. 

5.3 Limitations 

While the study demonstrates the efficacy of GANs in EHR synthesis, several limitations persist: 

 Realism vs. Privacy Trade-off: Strong privacy constraints (e.g., differential privacy with low 
ϵ\epsilonϵ) can reduce the fidelity of synthetic records, particularly for rare or complex patient 
features. 

 Clinical Validation: Statistical and predictive evaluation cannot fully replace clinical validation. 
Integration with clinicians and domain experts is necessary to ensure synthetic data reflect 
clinically meaningful relationships. 

 Sequence Complexity: Extremely long patient histories may require more advanced sequence 
modeling strategies (e.g., hierarchical GANs or transformer-based architectures). 

 Generalizability Across Institutions: The current study was conducted on a single hospital 
network dataset; further evaluation on multi-institutional datasets is necessary to assess 
model generalizability. 

5.4 Future Research Directions 

Future research should focus on: 

1. Federated Synthetic Data Generation: Implementing GANs across multiple institutions in a 
federated learning framework to generate synthetic EHRs without centralizing sensitive data. 

2. Hybrid Architectures: Exploring combinations of GANs with transformer models or attention 
mechanisms for improved modeling of long-term patient histories and multi-resolution temporal 
sequences. 
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3. Explainable Synthetic Data Generation: Developing XAI methods for synthetic EHR 
generation to ensure interpretability and transparency in downstream clinical applications 
(Ozdemir & Fatunmbi, 2024). 

4. Integration with Real-Time Systems: Leveraging GANs for real-time data augmentation and 
predictive modeling in critical care or ICU settings. 

5. Standardization and Regulatory Frameworks: Collaborating with healthcare regulators to 
establish standards for the use of synthetic EHR data in clinical trials, AI research, and 
operational analytics. 
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